import React from 'react'; const AthleteProfile = ({ athlete }) => { return (
{athlete.name}

{athlete.name}

{athlete.sport} • {athlete.team}

Performance Stats

Audience Demographics

Total Reach: {athlete.audience.reach.toLocaleString()}

Engagement Rate: {athlete.audience.engagementRate}%

{/* Visualization of audience demographics */}

Brand Interests

{athlete.brandInterests.map(interest => ( {interest} ))}
); }; const express = require('express'); const router = express.Router(); const { Athlete, Brand } = require('../models'); // Get recommended athletes for a brand router.get('/api/recommendations/:brandId', async (req, res) => { try { const brand = await Brand.findById(req.params.brandId); // Get athletes matching the brand's target demographics and values const recommendedAthletes = await Athlete.find({ sport: { $in: brand.targetSports }, 'audience.demographics': { $elemMatch: { $in: brand.targetDemographics }}, brandInterests: { $in: brand.brandValues } }) .sort({ 'audience.engagementRate': -1 }) .limit(10); res.json(recommendedAthletes); } catch (error) { res.status(500).json({ error: error.message }); } }); // Create a new sponsorship opportunity router.post('/api/opportunities', async (req, res) => { try { const opportunity = new Opportunity({ ...req.body, postedBy: req.user.id, createdAt: new Date() }); await opportunity.save(); // Find matching athletes and notify them const matchingAthletes = await Athlete.find({ // Matching criteria }); // Send notifications (would implement actual notification service) res.status(201).json(opportunity); } catch (error) { res.status(400).json({ error: error.message }); } }); def calculate_match_score(athlete, brand, opportunity): """Calculate compatibility score between athlete and brand opportunity""" base_score = 0 # Sport matching if athlete.sport in opportunity.target_sports: base_score += 30 # Demographic match demo_overlap = calculate_demographic_overlap( athlete.audience_demographics, brand.target_demographics ) base_score += demo_overlap * 40 # Brand values alignment values_match = len(set(athlete.brand_interests) & set(brand.brand_values)) / len(brand.brand_values) base_score += values_match * 30 # Apply engagement rate multiplier engagement_multiplier = 1 + (athlete.engagement_rate / 100) final_score = base_score * engagement_multiplier return final_score